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Abstract
It is shown that making use of frictional interactions allows for an effective
directed motion of a block produced by asymmetrical vibrations of the
underlying plate. We found that the block dynamics exhibits four different
regimes of motion depending on the relationships between the values of the
frictional forces and the characteristics of the plate vibrations. The optimal
motion of the block can be achieved by tuning the amplitudes and frequencies
of the vibrations in a controllable way.

1. Introduction

The origin of transport in dynamical systems at atomic and mesoscales has been an active
research area during recent years. It was found that nonlinear interactions may lead to many
intriguing dynamical features of these systems, in particular to directed transport, which is
produced by breaking time and/or spatial symmetries, without applying an external constant
bias [1–8]. Most studies have focused on the classical dynamics of a particle or a chain
of particles in a one-dimensional periodic potential under the influence of a time-periodic
external field [1–7]. The mechanism of directed motion in these systems has been studied
in detail. It has been shown that directed motion can be induced dynamically and no spatial
asymmetry is required which is built into the system [4–6, 8]. In contrast, the dynamics of
mesoscopic objects (of micrometre size) driven by time-dependent forces with a zero mean has
attracted less attention, although it offers new directions in microfluidics and micromachining
applications [9–14]. Asymmetric vibrations of surfaces have been already used to move
droplets, hydrogel rods, microparticles and other solid objects on surfaces [9–11, 14, 15].

The motion of a mesoscale object (block) on a solid plate involves the interaction of a
large ensemble of asperities that form the frictional interface [16, 17]. This effect gives rise
to a static friction (the force necessary to start sliding) and velocity-dependent kinetic friction
(the force necessary to keep sliding at a given velocity). Usually such behaviour is referred to
as dry friction. The dynamical response of a mechanical system with dry friction is nonlinear
because the frictional force in a sliding state differs from the static friction.
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In this paper we investigate the motion of a mesoscopic block produced by asymmetrical
lateral vibrations of the underlying plate. Qualitative features of the vibration-induced motion
have been discussed recently [11]. Here we extend this study by including more realistic laws
of friction and investigating in detail possible regimes of the block motion. We demonstrate
that making use of frictional interactions allows for an effective directed motion of the block
produced by asymmetrical vibrations of the underlying plate. The observed dynamical regimes
are strongly dependent on the ratio between the values of the static friction and kinetic friction
at low velocities. The direction and velocity of the block are determined by the frequency,
amplitude and shape of the prescribed plate vibrations. All these parameters can be tuned to
achieve desirable modes of block motion.

2. The model

Let us consider a solid block located on a plate that undergoes asymmetrical lateral vibrations
of zero mean force. Interactions between the sliding block and the plate can be described by
static friction, Fs, and velocity-dependent kinetic friction, Fk. Here we use the simple form of
the kinetic friction

Fk = −F0
k sgn(ẋ) − ηẋ (1)

where ẋ is the velocity of the block with respect to the plate, sgn(ẋ) denotes the sign of ẋ ,
F0

k is the limiting value of kinetic friction at zero velocity and η is a dissipation constant.
Equation (1) adequately depicts the frictional properties of solid systems at the scale above
tenths of nanometres [16].

It is convenient to write an equation of motion in the reference frame of the vibrating plate.
For the equation of motion we have to distinguish whether the block sticks with the plate or
slips. If it sticks, its position relative to the plate, x , does not change until the driving force, Fin,
exceeds the static friction. Thus

ẋ = 0 if |Fin| � Fs. (2)

If the block slips, the equation of motion reads

mẍ = Fk + Fin (3)

where the driving force presents the effects of inertia Fin = −md2xpl/dt2, m is the block mass
and xpl(t) is the plate coordinate. It should be noted that inertial forces are used to create
dynamic motion for coarse positioning in commercial scanning probe instruments [15]. In this
work we consider a case of biharmonic driving when the plate vibrations have the following
form:

xpl = A1 cos(ω1t + ϕ1) + A2 cos(ω2t + ϕ2). (4)

Most of results presented below have been obtained for

A2 = A1/2 > 0, ω2 = 2ω1, ϕ1 = ϕ2 = 0.

It is convenient to introduce dimensionless coordinates and time, x̃ = x/A1 and t̃ =
t/τ , where τ = 2π/ω1. The dynamical behaviour of the system is determined by the
following dimensionless parameters: r = F0

k /Fs, η̃ = ητ/m, F̃s = Fs/(A1mω2
1) and

F̃in = Fin/(A1mω2
1). In order to characterize the block motion we performed numerical

calculations over 200 periods of oscillations and present dependences of the mean block
displacement during one period of vibrations, X , and the drift velocity V = X/τ on system
parameters. In the following we refer to X as the net drift.
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Figure 1. (a) Time dependence of the driving force, F̃in(t). The dotted lines show acceleration,
F̃ (1)

in and F̃ (3)
in , and deceleration, F̃ (2)

in , peaks respectively. ((b), (c)) Dimensionless net drift of the

block, X̃ = X/A1, as a function of dimensionless static friction: (b) F0
k = 0, η = 0; (c) η̃ = 1

and F0
k /Fs = 0 ( ), 0.5 ( ) and 1 ( ). Other parameters:

A1/A2 = 2, ω2/ω1 = 2. Four regimes of motion observed at low kinetic friction are marked
as R0, R1, R2 and R3. The boundaries between these regimes which were found for F0

k = 0, η = 0
(equation (6)) are shown by dashed lines. ((d)–(f)) Time dependences of the dimensionless block
velocity, ṽ = ẋ(t)/(A1/τ), (bold solid lines) for three regimes of motion: (c) R1 (F̃s = 2.90),
(d) R2 (F̃s = 1.58) and (e) R3 (F̃s = 0.95). Thin solid lines show the driving force, and dotted lines
show the values of the static friction, ±F̃s. Here F0

k = 0 and the other parameters are as in (c).

It should be noted that equations (1)–(4) can be solved analytically, but the resulting
expressions are too cumbersome and we do not present them here. Below we present the
results of numerical calculations, discuss typical regimes of motion induced by the biharmonic
driving, and demonstrate how this motion can be tuned varying the amplitude and frequency of
the plate vibrations.

As we show below, the driving force, Fin, with zero average can induce a directed motion
of the block only in the presence of nonzero static or kinetic friction, F0

k . In order to get nonzero
drift velocity the duration of the prescribed plate motion with positive acceleration should be
different from that with negative acceleration (see figure 1(a)).

3. Results and discussion

We found that the observed regimes of the block motion are mainly determined by relationships
between the peak values of the driving force and the value of the static friction. For the force
profile in figure 1(a) there are two acceleration peaks, F (1)

in and F (3)
in , and a deceleration peak,
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F (2)
in , whose amplitudes are given by the following equations:

F (1)
in = mω2

1(A1 + 4A2), F (3)
in = mω2

1(4A2 − A1),

F (2)
in = −mω2

1(A2
1/32A2 + 4A2).

(5)

It should be noted that F (1)
in > |F (2)

in | > F (3)
in . Figures 1(b) and (c) show the dependences

of the block net drift, X̃ , on the static friction for given driving parameters and a given ratio
between the static and kinetic friction, F0

k /Fs. One can see that in the case of low kinetic
friction, F0

k < 0.5Fs, four regimes of motion can be isolated, which we denote R0 − R3. In
the idealized case of a negligible kinetic friction, F0

k = η = 0, the positions of the boundaries
between the regimes are determined by the three peak magnitudes of Fin (see figure 1(b)) and
can be calculated as

Fs = F (i)
in , i = 1, 2, 3. (6)

Figure 1(c) shows that, in a realistic case of nonzero kinetic friction, the boundaries between
the different regimes of motion are slightly shifted from the values given by equation (6), but
the general features of the dynamics remain the same as for F0

k = η = 0.
In the first regime R0, where F̃ (1)

in � F̃s, the driving force is always lower than the static
friction and the block remains stuck to the plate. In the regime R1, which for F0

k = η = 0
occurs at |F̃ (2)

in | � F̃s < F̃ (1)
in , the vibrations of the plate induce one ‘burst’ of block motion

in the positive direction (see figure 1(d)), and a reduction of the static friction for a given
driving force leads to an increase of the net drift X̃ (see figures 1(b) and (c)). In the regime R2

(F̃ (3)
in � F̃s < |F̃ (2)

in | for F0
k = η = 0), which can be called a ‘two-burst regime’; the block

motion in the negative direction becomes also possible (see figure 1(e)), and time intervals of
negative displacement increase with a reduction of F̃s. As a result, the drift, X̃ , in the regime
R2 is smaller than that in R1 (see figures 1(b) and (c)). It should be noted that the inversion of
the drift velocity with a variation of F̃s can be observed in this regime.

The dynamics in regimes R2 and R3 can be represented as a set of the alternating segments
of stick or slip motion of the block. In contrast, the regime of low static friction, R3 (F̃s < F̃ (3)

in
for F0

k = η = 0), does not show sticking intervals (see figure 1(f)). Here the driving force
acting on the block at the turning points of its motion is always higher than the static friction,
and the block never stops. In this regime the static friction is of no importance, and it is
the kinetic friction that breaks the symmetry of the block motion and leads to a nonzero net
displacement. As expected, the latter vanishes for Fs, F0

k → 0.
Figure 1(c) shows that an increase of kinetic friction (F0

k and η) smears the boundaries
between different regimes of motion. In particular, for F0

k > 0.5Fs and η̃ � 1 the bursts of
motion in the negative direction, which are characteristic for the regimes R2,3, give only minor
contribution to the net drift, and as a result we do not observe a decrease of X̃ when passing
from regime R1 to the regimes R2,3. However, the main features of the vibration-induced
motion discussed above for a case of low kinetic friction are still retained for larger values of
F0

k and η. These include nonzero net drift for 0 < F̃s < F̃ (1)
in , alternating segments of stick and

slip motion of the block and more.
Figure 2 demonstrates the effect of kinetic friction on the drift for three typical values

of static friction. For high static friction, corresponding to the one-burst regime R1

(curve in figure 2), we found an expected reduction of the drift with increase of
F0

k . In this regime the block moves in the positive direction only, and under these conditions an
increase of the resistant force, −F0

k sgn(ẋ), decreases the overall displacement. In contrast,
a counterintuitive increase of the drift with F0

k has been observed for low static friction
(curve in figure 2). In this regime, R3, the static friction is of minor importance,
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Figure 2. Dimensionless net drift of the block as a function of the dimensionless kinetic friction.
The results have been obtained for three values of static friction, F̃s: 0.95 ( ), 1.58
( ) and 2.9 ( ), which correspond to regimes R1, R2 and R3, respectively.
The other parameters are as in figure 1(c).

and an increase of the kinetic friction enhances an asymmetry of the block motion and as a
result intensifies a directed motion. It has been show recently [11] that in this case the net drift
can be estimated as

X = −F0
k s̄/η (7)

where s̄ = ∫ τ

0 dts(t) and s(t) is a sign of the block velocity for Fs, F0
k = 0. The results

presented in figure 2 follow equation (7), showing a linear increase of the net drift with F0
k . In

the intermediate two-burst regime R2 (curve in figure 2) an interplay between the
effects of breaking symmetry and an additional resistance leads to a non-monotonic dependence
of X̃ on F0

k . Hence our calculations demonstrate that a relation between the static and dynamic
friction strongly affects the efficiency of the vibration-induced motion.

The above analysis allows us to understand the dependence of the drift on the driving
parameters (amplitudes A1 and A2 and frequencies ω1, ω2) and to achieve a desirable mode of
motion of the block. Figures 3(a) and (b) show the dependence of the drift on the amplitude
A1, for a given ratio between amplitudes, A2/A1 = 0.5. The regimes of motion presented in
these figures are similar to those shown in figure 1. As above, for reasonable values of kinetic
friction, F0

k /Fs � 0.5, one can distinguish four regimes of motion. In the case of a negligible
kinetic friction, F0

k = η = 0, the positions of the boundaries between the regimes are given
by solutions of equation (6), and for nonzero kinetic friction the boundaries are slightly shifted
from the corresponding values (see figures 3(a) and (b)).

For low kinetic friction the most efficient motion of the block in the positive direction is
attained for the value of the amplitude A1, which corresponds to the boundary between regimes
R1 and R2, when |F̃ (2)

in | ≈ F̃s. The direction of the net drift changes in regime R2, and the
maximal negative drift occurs at a boundary between regimes R2 and R3, i.e. when F̃ (3)

in ≈ F̃s.
It should be noted that the length and duration of the bursts in regimes R2 and R3 can be tuned
with high precision by changing the amplitude A1. This may be useful for micromachining
applications where high precision positioning requirements are of primary importance.

At high driving amplitudes, F̃ (3)
in � F̃s, the block never stops (regime R3) and the drift

levels off at a limiting value as A1 increases. In this regime the motion is independent of the
value of static friction and the net drift is proportional to the kinetic friction, as suggested by
equation (7). This behaviour has been examined in detail recently [11], and the results of our
calculations are in good agreement with the predictions of that work.

Figure 3(c) demonstrates a possibility to tune the block motion through a variation of the
ratio of amplitudes, A1/A2, for a given value of A1. For large and small values of the ratio,
A1/A2 � 1 and A1/A2 � 1, the plate motion becomes symmetrical and the net drift is
negligible no matter how large the amplitude of the driving force is. To achieve the maximal
drift one has to keep the ratio A1/A2 close to 0.5.
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Figure 3. ((a), (b)) Dimensionless net drift of the block as a function of the dimensionless driving
amplitude Ã1 = A1/A0

1, where A0
1 = Fs/(mω2

1). The results have been obtained for a given ratio of
the amplitudes A1/A2 = 2, ω2/ω1 = 2 and (a) F0

k = 0, η = 0; (b) η̃ = 1 and three values of kinetic
friction, F0

k /Fs = 0 ( ), 0.5 ( ), 1 ( ). (c) Dimensionless net
drift of the block as a function of the ratio of the amplitudes A2/A1. The results have been obtained
for A1 = 0.6Fs/(mω2

1), F0
k /Fs = 0 ( ) and 0.5 ( ). The other parameters

are as in figure 1(c). The boundaries between the regimes of motion which were found for F0
k = 0,

η = 0 (equations (6)) are shown by dashed lines.

Figure 4. Dimensionless drift velocity, Ṽ = V/V0, as a function of the dimensionless driving
frequency ω̃ = ω1/(2πηm), where V = X/τ and V0 = A1η/m. The results have been obtained
for two values of kinetic friction F0

k /Fs: 0 ( ) and 0.5 ( ). The boundaries
between the regimes of motion which were found for F0

k = 0, η = 0 (equations (6)) are shown by

dashed lines. Parameter values: ω2/ω1 = 2, F̃s(ω1 = 2πη/m) = 1.58.

Another parameter which can be used to achieve a desirable motion of the block is the
frequency of vibrations. The dependency of the drift velocity on ω1 is presented in figure 4.
In contrast to previous figures, here we show the drift velocity rather than the displacement
since the period of vibrations changes in this case. Two effects determine the dependence of V
on ω1: (i) the amplitude of the driving force is proportional to ω2, (ii) there is a competition
between timescales of external driving, 1/ω, and relaxation, m/η. Also here for low kinetic
friction, F0

k < 0.5Fs, the four regimes of motion described above are visible in figure 4. The
drift velocity vanishes at both low and high frequencies. In the first case the maximal value of
the driving force is smaller than the static friction (regime R0), and the block is stuck with the
plate. At high frequencies the block never stops moving in both positive and negative directions
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(regime R3). However, a duration of displacements in each direction decreases with ω1, and as
a result the drift velocity also vanishes. The maximal drift velocity is achieved at a frequency
corresponding to a boundary between regimes R1 and R2, and there is an inversion of the
direction of the drift velocity in the two-burst regime, R2. With increase of the kinetic friction
the motion in the negative direction is suppressed and velocity inversion disappears; also the
maximum of the drift velocity shifts to higher frequencies.

4. Possible experimental implementations

In order to define the values of driving parameters which should be used under realistic
conditions one has to know the magnitudes of the static and kinetic friction, Fs, F0

k , and the
dissipation coefficient η. Experimental studies of a wide range of materials indicate that the
frictional forces follow the modified Amontons’ equation [16]:

Fs = μs(Fadh
s + L) (8)

where μs is a static friction coefficient, F adh
s is an adhesive force acting between the block and

the underlying surface at rest, and L is a normal load which in our case equals the gravitational
force, mg. The above equation accounted for the experimental observation that there is already
a finite friction force at zero load for adhering surfaces. A similar equation applies to the kinetic
friction

F0
k = μk(Fadh

k + L) (9)

where μk is a kinetic friction coefficient and F adh
k is an adhesive force in the kinetic state which

is smaller than the static adhesive force. It should be noted that for nanosize and microsize
systems F adh

s , F adh
k � mg, and the contribution of the gravitational force to friction can be

neglected.
In order to illustrate our theoretical results we use here the data obtained for a

microelectromechanical device (MEMS) which presents a microsize silicon block sliding on
a monolayer-lubricated polycrystalline silicon surface [18]. For this system μs ≈ 0.33, μk ≈
0.24, F adh

s = 4.6 μN, Fadh
k = 4.2 μN, η/m ≈ 103 s−1 and mg = 0.03 μN. Similar friction

parameters have been reported for nanoparticles (areas between 104 and 105 nm2) deposited
on graphite and molybdenum disulfide surfaces [19]. Then for the frequency 2πω1 = 10 kHz,
which is readily accessible by the shear modulation technique, our calculations show that a
directed motion of the block can be induced for the driving amplitudes, A > 66.5 μm. For the
above values of parameters the maximal drift velocity V = 57.4 × 10−2 m s−1 is achieved in
the one-burst regime, R1, for A1 = 95 μm, and the corresponding burst (step) length equals
57.4 μm. On varying the amplitude from 66 to 95 μm, one can get a desirable magnitude of the
step length ranging from a few nanometres to 100 micrometres. These estimations demonstrate
that the proposed mechanism provides long-range motion with step sizes lying in the nanometre
to micrometre range. Hence this approach may be useful for very high precision positioning
requirements in micromachining applications [13].

Another possible application of the vibration-induced sliding discussed here is a separation
of particles deposited on surfaces according to their sizes. The adhesive forces in equations (8)
and (9) are proportional to the area of contact between the particle and the surface, while
the driving force is proportional to the volume of the particle. As a result, by properly
adjusting the driving amplitude and frequency, particles of different sizes may be forced to
move with different drift velocities in the same or in opposite directions (see figures 1(b)
and (c)). Alternatively, particles of a certain size may be forced to stay localized while others
move in a desirable direction with a desirable velocity.
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It should also be noted that by measuring the dependence of drift velocity on the amplitude
and frequency of vibrations and comparing the results with the theoretical prediction, one
can estimate the values of static and kinetic friction which are still not well defined at the
microscale and the nanoscale. Hence the proposed approach gives certain access to frictional
and adhesional properties of microscale and nanoscale objects that may contribute to a better
understanding of the fundamental process of friction.

5. Conclusions

We have demonstrated that, in the presence of nonzero static or/and kinetic friction, effective
directed motion of the block can be produced by biharmonic vibrations of the underlying plate.
The block dynamics exhibits four different regimes of motion depending on the relationships
between the values of frictional forces and the characteristics of the plate vibrations. We have
shown that the direction, velocity and length of individual bursts of the block are determined
by the frequency, amplitude and shape of the plate vibrations. The optimal motion of the block
can be achieved by tuning the driving parameters in a controllable way.
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